
Omnidirectional Robot Control with the

Botball XBC Controller: Software library

Development.

Jeffrey G. Cumber and Preston R. Johnson

Robert E. Lee Engineering Academy

cumberj@duvalschools.org, prjohn16@yahoo.com

Omnidirectional Robot Control with the Botball XBC

Controller: Software Library Development

1. Abstract

The goal of our research was to develop a software library that will make it easy to control an

omnidirectional robot using an XBC or CBC Botball controller. We developed functions that

enable the robot to slide along a heading, rotate, and move in an arc centered on any wheel or

face.

2. Introduction

Omnidirectional robots are robots that can move instantaneously in any direction from any

heading without having to turn first. These robots are also called holonomic. A holonomic drive

platform is advantageous in robotics because it allows faster response to changing environmental

circumstances. These robots can “slide” out of the way without having to wait for the base to

turn to a particular heading. In contrast, robots such as the iRobot Create must take time to turn

and then move out of the way of a potentially undesirable condition.

3. Robot Description

Omnidirectional robots typically are of two

different types: four-wheeled and three-

wheeled. They can also be of two different

configurations: leading-face or leading wheel.

Combining the types and configurations gives

a total of four different robot setups. A four

wheel wheel-leading robot is a „+‟ robot. A

four wheel face-centered robot is an „X‟

robot. For the three-wheeled robots, face-

leading robots are „Y‟ robots and wheel-

leading robots are „Δ‟ (Delta). See figure 1.

Figure 1- Holonomic robot configurations

mailto:cumberj@duvalschools.org
mailto:prjohn16@yahoo.com

The advantage of a four-wheeled robot is efficiency. In a four-wheel setup, for some angles (0,

90, 180, and 270 for a wheel-centered robot) two of the wheels are in the direction of motion and

can run at full power while the other two can be idle. For other angles the calculations are

trivial. In a three-wheeled setup at most one wheel is

in the direction of motion and the other two must be

powered at less than full value to achieve the desired

motion. This complicates the calculations of the

individual motor speeds.

The advantages of the three-wheeled platform make it

more suitable, in our opinion, for a robot drivetrain

even with the increased difficulty of calculations. The

top advantage is that for a three-wheeled platform, all

three wheels are always in the same plane and touching

the floor surface. This is necessary for omnidirectional

wheels to work. For a four-wheeled system, one wheel

may be above the surface, giving no traction and

rendering holonomic movement impossible. Another advantage of the three-wheeled system is

size reduced size, cost, and weight due to only three wheels

and motors being used.

Our robot is therefore of the three-wheeled variety. We

chose to make it face-leading to facilitate the placement of

sensors at the front and to enable the robot to get closer to

objects. Using our configurations defined above makes it a

„Y‟ type robot (Fig. 2). Our numbering convention for

wheels and faces is to call the leading face F1, and proceed

clockwise around the robot. The wheel numbering

convention will correspond to the face opposite the wheel.

Thus, W1 is at the rear of the robot, opposite F1 (Fig 3.) All

library functions will be written for this type of robot due to time constraints, but translating

them to other configurations is not difficult.

4. Function Descriptions

a. spin(int degrees, int speed); Rotates robot in place clockwise for a specified

number of degrees at a specified speed. This is the easiest function to write, as

rotation is achieved by turning all three motors on at the same speed in the same

direction. To calculate degrees of turn, motor counter positions are stored and

compared to a calculation of clicks/degree. Negative speed numbers are used to

turn counterclockwise.

b. vector(int angle, int speed); Slides robot on a heading of clockwise degrees from

forward at a specified speed. To develop this function we thought about what

Figure 2- XBC-based holonomic ‘Y’ style robot

Figure 3- Wheel and Face numbering

happens when the robot is moving forward. When the robot moves in a straight

line forward, W1 is not moving, and W2 and W3 are moving at full speed.

However, due to the angles of the wheels (120 degrees apart, or 60 degrees from

the center line) the maximum speed is speed times the cosine of 60 degrees.

Thus, in the three-wheeled configuration we lose maximum speed in return for

maneuverability. When the robot is sliding on a heading of 90 degrees, W1 is

now parallel to the direction of motion and can contribute full speed to movement.

We now have a relationship between the speed of W1 and the heading angle. At a

zero degree angle, the speed of W1 is zero, and at 90 degrees the speed is full, so

we can define the speed of W1 as a function of heading angle by W1speed =

speed * sin(angle). We do need to reduce this speed by a factor of cos(30) at the

90 degree heading to make up for the angles of W2 and W3. For W2 and W3,

they are also moving at full speed but W3 is reversed from the zero degree

heading value. Now we have the speeds of W2 and W3 related to the heading

angle: W2speed = speed * cos of heading angle + 60 degrees, and W3speed =

speed * cos of heading angle – 60 degrees.

c. f_arc(int face; int speed, int radius); Rotates robot in an arc centered on a

particular face with a specified radius and speed. A radius of 0 (zero) will rotate

the robot around a stationary face. Really all this function does is turn on the

wheel opposite the desired rotation face at the desired speed. The two wheels

adjacent to the face do not move, and the robot revolves around them. Increasing

the radius will turn on the stationary wheels at increasing speeds, so a radius of

100 will turn the wheels on full and the robot will slide in a straight line sideways.

This method of using a “percent” radius was chosen because as the radius gets

closer to a straight line the value approaches infinity. The numbers get very large

and it becomes difficult to handle them in the context of our control method.

d. w_arc(int wheel; int speed, int radius); Rotates robot in an arc centered on a

particular wheel with a specified radius and speed. A radius of 0 (zero) will rotate

the robot around a stationary wheel.

5. Future Development

Currently we are working on an additional function that will combine the vectoring function with

the spin function, allowing the robot to turn while sliding. This functionality is necessary for true

holonomic motion, but it is difficult to implement. To get this type of motion from our platform,

we need a constantly varying motor signal, which can be done in a number of ways. The first is

to generate an array of motor speeds, and then write those speeds to the motors one at a time

using a for loop. We can also do calculations on the fly, but we‟ve found that the number of

trig calculations slows down the robot considerably for long movements (and we do not have full

functionality as of yet.) With this approach we still have to write our motor speeds one at a time

using a for loop.

We have also developed a unique motion tracking protocol that incorporates both rotation and

vectoring to follow objects, as well as object avoidance using IR Rangefinders. These two

methods are currently being revised and rewritten and will be included as space and time allows.

Our ultimate goal is to create a flexible platform that can be used to compete in the KIPR Open

and other robotics competitions. We have seen in past years‟ competitions situations in which

the ability to move in any direction instantaneously would be a great benefit.

6. Functions

void spin(int speed){

 mav(1, speed);

 mav(2, speed);

 mav(3, speed);

}

void vector(float angle, float speed){

 float r_angle = (angle * pi / 180.0);

 int spd1 = (int)(cos(r_angle) * speed);

 int spd2 = (int)(cos(r_angle+(pi/3.0)) * -speed);

 int spd3 = (int)(cos(r_angle-(pi/3.0)) * speed);

 mav(1, spd1);

 mav(2, spd2);

 mav(3, spd3);

}

void f_arc(int face, int speed, int radius){

if (face=1){

mav(1, speed);

 mav(2, -(radius*speed/100));

 mav(3, (radius*speed/100));

}

 if (face=2){

mav(2, speed);

 mav(3, -(radius*speed/100));

 mav(1, (radius*speed/100));

}

if (face=3){

mav(3, speed);

 mav(1, -(radius*speed/100));

 mav(2, (radius*speed/100));

}

}

void w_arc(int face, int speed, int radius){

if (face=1){

mav(1, radius * speed / 100); //percent radius

 mav(2, speed);

 mav(3, speed);

}

 if (face=2){

mav(2, radius * speed / 100);

 mav(3, speed);

 mav(1, speed);

}

if (face=3){

mav(3, radius * speed / 100);

 mav(1, speed);

 mav(2, speed);

}

}

7. References

Rojas R and Förster A G: “Holonomic Control of a robot with an omnidirectional drive.”

Künstliche Intelligenz, BöttcherIT Verlag, 2006.

Yong L, et al: “Omni-directional mobile robot controller based on trajectory linearization.”

Robotics and Autonomous Systems 56 (2008) 461–479.

“How to build a Robot Tutorial” Society of Robots,

http://www.societyofrobots.com/robot_omni_wheel.shtml. Accessed 5/28/2010.

Kruhak, I: “Holonomic Robot.”

http://cs.nmu.edu/~SeniorProjects/ikruhak/Holonomic%20Robot.ppt. Accessed 5/28/2010.

http://www.societyofrobots.com/robot_omni_wheel.shtml
http://cs.nmu.edu/~SeniorProjects/ikruhak/Holonomic%20Robot.ppt

