
CBCJVM: Applications of the Java Virtual Machine with Robotics:
Concept and Features

Braden McDorman (beta/catron)
Benjamin Woodruff (pipeep)
Akshay Joshi (axyjo)
Jonathan Frias (freakinjonathan)

Norman Advanced Botball braden@betabot.org
Fletcher High School odetopi.e@gmail.com
American Community School of Abu Dhabi me@akshayjoshi.com

Robert E. Lee High freakinjonathan@gmail.com

CBCJVM: Applications of the Java Virtual Machine
with Robotics: Concept and Features

1 Introduction

The Botball tournament requires programmers to rapidly develop and prototype programs.
However a disconnect is visible between the language and the tools provided and the goals of
the game. Although very fast, C is generally considered to be a low-level language, making
it what many of us believe to be the wrong tool for the job. The result is buggy programs,
cluttered code, and a lack of flexibility in user libraries. The CBCJVM is the product of
the realization that although slower, interpreted Object-Oriented programming languages
are better for the type of prototyping used in the Botball competition. As KIPR has stated
many times, it is highly unlikely that the CBC will ever be officially changed from C [5].
CBCJVM is not just a port of JVM to the CBC, but it encompasses a group of libraries and
tools to compete with (and often times surpass) those offered by KISS-C. In this paper we
will look at the internals of CBCJVM, as well as what it can provide for your team.

2 Concept and Background

2.1 Languages

The CBCJVM originally went under the name “CBCJava”, but as the project grew, it was
soon realized that using the JVM only for Java was a waste. The Java Virtual Machine
has become a de facto standard of virtual machines, and almost every interpreted language
imaginable has some port to the JVM, and these languages typically have support for inter-
facing with Java libraries. The JVM is fast, taking advantage of Just-In-Time compilation
and various other optimizations [4], making its performance somewhat comparable to C++



and C (but performance is still in no way better than a native language). CBCJVM has
been used with JavaScript (via Mozilla Rhino) and Scala (which compiles directly to Java
byte-code), but it can be used with many other languages such as Ruby, Python, Lua, and
even LOLCODE. While it cannot always match the performance of native interpreters for
these languages, such as WebKit (JavaScript), CPython, or the standard Lua interpreter,
it offers a fast way for these teams to get up and running with these high level languages.
What’s more, is that CBCJVM already includes a set of powerful libraries that can be used
in conjunction with these languages to help teams that would otherwise be on their own
with a language.

Due to the limited scope of this Document, and the large differences in how various JVM
languages manage their bindings to Java code, we will not discuss the specifics on running
these languages. Please see the Ending Notes for information on finding help for doing this.

2.2 Libraries

Rather than being a straight port of the JVM to the CBC, CBCJVM includes libraries de-
veloped on top of the JVM. These libraries allow access to the KISS-C libraries via the Java
Native Interface (JNI), allowing you to control motors, read sensors, and so on. Although
bugs occasionally show up in this low-level communication layer, we believe that our imple-
mentation is complete and stable enough to be used on a day-to-day basis. These low level
functions are available in the cbccore.low package.

On top of this, we have classes that make the low level functions more object-oriented,
and use camelCase for function names, rather than KISS-C’s underscore naming system.
The majority of CBCJVM’s classes use these camelCased classes, and so should you. That
said, All simulation happens in this cbccore.low package, and thus there is not loss in
functionality by using the cbccore.low package. There exist two obvious reasons for the
use of the cbccore.low package in your own code:

• Ease of porting from KISS-C code.

Although the best option would be to port your code to CBCJVM utilizing the new APIs,
in an object-oriented fashion, the cbccore.low package can be used to do a quick ad-hoc
port of code, due to it’s similarities to the KISS-C’s API.

• The use of some feature where no high-level, camelCased class exists to handle it yet.

We try our best, but as a (currently) small development team, there is the possibility
that we have overlooked some functions in our porting efforts. However, the best option
would be to fork[3] our github repository 1 , add that functionality yourself, and submit
a pull request[6], or report it in our github issue tracker 2 and wait for a fix.

More information regarding these libraries can be found in the Features and Internals
section.

1http://github.com/catron/CBCJVM
2http://github.com/catron/CBCJVM/issues

http://github.com/catron/CBCJVM
http://github.com/catron/CBCJVM/issues


3 Features and Internals

3.1 Running the JVM

CBCJVM uses a lightweight JVM called JamVM[7]. JamVM is designed for embedded plat-
forms, such as the Linux running Chumby used in the CBC. JamVM gives us excellent com-
patibility with Sun’s Java standard library because it uses GNU Classpath[1] for it’s standard
library. This allows us to run generated byte code on the computer and CBC with no mod-
ification. Our simulator exploits this cross compatibility by replacing the cbccore.low.*

libraries at runtime.

3.2 Simulator

As mentioned, our simulator replaces classes loaded by cbccore.Device at runtime if it
detects it is running on a computer. These simulated Device classes then update a Simulator
GUI singleton. This is done automatically and is transparent to the user. The simulator is
still in an early state, but its architecture allows room for fast and easy expansion.

Figure 1: The CBCJVM simulator, demonstrating motor simulation. The simulator also has
support for framebuffer simulation (not shown).

3.3 Frame Buffer Access

One of the more unique features of CBCJVM is the ability to draw to the CBC’s 320 ×
240 screen. This is accomplished by writing RGB565 data to the /dev/fb0 pipe provided
by Linux. A custom-made library built specifically for CBCJVM gives you helper classes
such as pixmaps (Pixel Buffers) with simple drawing functions and Image data types. The
frame buffer is also simulated on the computer, allowing you to test your drawing code



directly in the simulator. You can find more details about CBCJVM’s frame buffer library
in cbccore.display package.

3.4 Movement Library

Never again will you have to write your own movement library CBCJVM includes an ex-
tensible Object-Oriented library. Its plug-in based architecture allows easy adoption for any
piece of hardware; motor based, or create based; a simulator plug-in is even in development,
meaning that you will be able to have a KISS-C style simulation system that can be used
with any JVM language. Plug-ins are essentially stubs, telling the DriveTrain class (the
center of the movement library) what functions to call for a specific piece of hardware. By
making all your movements through this library, you can take advantage of features such as
position tracking. The movement library can be found in cbccore.movement.

3.4.1 Example Code

import cbccore.movement.DriveTrain;

import cbccore.movement.plugins.create.CreateMovementPlugin;

/* There is also a MotorMovementPlugin located at:

* cbccore.movement.plugins.motor.MotorMovementPlugin

* for traditional Lego-chassis robots. You can read more

* about this in the later mentioned JavaDoc files.

*/

public class MovementLibraryExample {

public static void main(String[] args) {

//create a new DriveTrain instance:

DriveTrain dt = new DriveTrain(

new CreateMovementPlugin(

//Wrap a plugin in the DriveTrain class

1.0 //Efficiency, a ’fudge’ factor

, true //"Full" mode, as defined by KISS-C

)

);

/* You are free to extend the DriveTrain class as you wish,

* using any "plug-in" you wish with the extended version.

*/

//move one meter forward, half speed:

dt.moveCm(100.0, 0.5*dt.getMaxCmps());

//rotate 90 degrees, counter-clock-wise, half speed:

dt.rotateDegrees(90.0, 0.5*dt.getMaxDegreesPerSec());



System.out.println(dt.getPosition().getAngleDegrees());

//will print out 90.0

}

}

3.5 Configuration System

“Configurators” can get input from a user for several options using buttons, touch sen-
sors, or even analog sensors using an cbcccore.sensors.analog.AnalogBooleanAdapter.
This is accomplished by passing an array of options along with an array of acceptable
IBooleanSensors to use, then mapping each option to a unique sensor. Using Configu-
rators allows a programmer to quickly build menu systems based off of the inputs their
robot can handle.

3.6 CBCDownloader

CBCDownloader is a Java based downloader that functions over USB and network connec-
tions. Beyond downloading files, CBCDownloader can also send commands to the CBC over
USB and network connections. This allowed us to implement a simple console similar to a
ssh console.

3.6.1 Eclipse Integration

Ease of use being of the utmost importance to our team, CBCJVM’s Eclipse[2] Plug-in
allows you to download to your CBC via a network or via a flash drive. Eclipse’s built in
documentation, code completion, and automatic build system allow for you to develop code
even faster. Eclipse also provides thousands of plug-ins for things such as version control
with git and svn. When downloading over the network there is no need to recompile your
program, just simply press run again.



Figure 2: CBCJVM being edited in the Eclipse IDE

3.6.2 Network Downloads

Network downloads are accomplished over an ssh connection using scp to transfer files. If you
plan to use the network downloader, it is highly recommended you install the Norman/Nease
mods 3 on your CBC for wireless downloads, a new version of which will be released at GCER.
More information on finding the CBC’s IP address and networking with the CBC can be
found in the 2009 Nease-Norman CBC hacking paper4.

3.6.3 USB Downloads

USB Downloading was probably the single most desired feature in CBCJava, and we are
pleased to be able to offer it this year in CBCJVM. Due to limitations on the current cbcui
serial server, we had to rewrite it to be more accepting of non-C tasks. Our downloader
requires a custom cbcui binary you can download and install from Braden McDorman’s cbc
fork5. There are serveral benefits of our server, including simple console support (like ssh),
cbcui state manipulation, and downloading of files to any writeable location on the CBC’s

3http://community.botball.org/forum/technical/programming/normannease-cbc-mod-installer-v12-supports-cbcv2
4http://bit.ly/nn-cbc09
5http://www.github.com/catron/cbc

http://community.botball.org/forum/technical/programming/normannease-cbc-mod-installer-v12-supports-cbcv2
http://bit.ly/nn-cbc09
http://www.github.com/catron/cbc


file system. Our serial server can be turned on and off from the Settings page on your CBC,
to allow support for KISS-C downloads.

3.7 License

CBCJVM is licensed under the GPLv3 [8]. This license requires that you distribute the
source code of any modifications of CBCJVM along with any binary version of it that you
distribute. We, the authors of CBCJVM, believe this constitutes a fair and just agreement.
You are also permitted to use CBCJVM under any future version of the GPL that you wish.

4 Conclusion

This concludes part one of the CBCJVM paper. We hope to see you the next paper, titled
“CBCJVM: Applications of the Java Virtual Machine with Robotics: Setup, Help, and
Tomorrow.”

References

[1] GNU Classpath — GNU Project — Free Software Foundation (FSF). http://www.gnu.
org/software/classpath, 07 2009.

[2] Eclipse.org home. http://www.eclipse.org, 2010.

[3] Help.GitHub — Forking a project. http://help.github.com/forking, 2010.

[4] Performance Features and Tools — Oracle. http://java.sun.com/developer/

onlineTraining/Programming/JDCBook/perf2.html, 2010.

[5] Logan Cox. Can there be a KISS-C++ rather than KISS-C? | Botball Community.
http://community.botball.org/forum/miscellaneous/suggestions-and-bugs/

can-there-be-kiss-c-rather-kiss-c#comment-422, 2010.

[6] Tom Preston-Werner et al. Help.GitHub — Forking a project. http://github.com/

guides/pull-requests, 2010.

[7] Robert Lougher. JamVM — A compact Java Virtual Machine. http://jamvm.

sourceforge.net, 01 2010.

[8] Richard Stallman et al. The GNU General Public License — GNU Project — Free
Software Foundation (FSF). http://www.gnu.org/licenses/gpl-3.0.html, 06 2007.

http://www.gnu.org/software/classpath
http://www.gnu.org/software/classpath
http://www.eclipse.org
http://help.github.com/forking
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html
http://community.botball.org/forum/miscellaneous/suggestions-and-bugs/can-there-be-kiss-c-rather-kiss-c#comment-422
http://community.botball.org/forum/miscellaneous/suggestions-and-bugs/can-there-be-kiss-c-rather-kiss-c#comment-422
http://github.com/guides/pull-requests
http://github.com/guides/pull-requests
http://jamvm.sourceforge.net
http://jamvm.sourceforge.net
http://www.gnu.org/licenses/gpl-3.0.html

	Introduction
	Concept and Background
	Languages
	Libraries

	Features and Internals
	Running the JVM
	Simulator
	Frame Buffer Access
	Movement Library
	Example Code

	Configuration System
	CBCDownloader
	Eclipse Integration
	Network Downloads
	USB Downloads

	License

	Conclusion

