
A New Simulator for Botball Robots
Stephen Carlson
Montgomery Blair High School (Lockheed Martin Exploring Post 10-0162)

A New Simulator for Botball Robots
1   Introduction

Simulation is important when designing and testing any engineering design, particularly a 

robot.  Even though a simulation  cannot exactly  match reality,  general  concepts  can be 

examined quickly and cheaply in a simulation. In particular, trying code in a simulator is 

extremely useful,  since mistakes can be quickly  differentiated from actual  logical  issues 

which  need  to  be  debugged  on  a  real  board.  When  accounting  for  the  time  taken  to 

download code, charge robots, and reset the board, two or three simulated tests can be 

conducted in the time required for one real-world test.

However, it is difficult to find simulators well suited to testing Botball competition robots. 

KISS-C has a built-in simulation program that works on simple programs, but it  cannot 

simulate non-Create robots or sensors. Its physics are also sketchy in terms of collisions 

with  the  PVC  pipe,  a  technique  often used  to  align  a  robot.  Other  simulators  such  as 

USARSim [1] have fantastic physics engines but are not well suited to the fully autonomous 

challenges of Botball. A new solution is needed for effective simulation.

2   A New Simulator

A useful Botball simulator should be able to:

1. Run unmodified robot code, without requiring even an extra kissSim_init().

2. Replicate real-world physics.

3. Adapt to changing board layouts.

4. Follow real robot behavior to reasonable precision and accuracy. While fine tuning 

would be required in any case, less is better.

5. Allow tests to be examined in detail postmortem, for the times when the developer’s 

video camera pointed at the board is not good enough to find out what went wrong.

With these goals in mind, a new Botball-specific simulator was designed and coded from 

scratch in Java. Java’s cross platform nature opens its use to a wide variety of systems and 

avoids locking out dedicated Macintosh or Linux fans. This project, started in 2008, had to 

be heavily modified twice to account for the changing controllers used in Botball, so it was 

not actually ready for use until this year. The simulator’s main screen is shown below in 

Figure 1.



Figure 1: Screen shot of the simulator in action.

2.1 Features

Properly parsing C code is difficult, and re-implementing an algorithm to do so takes a long 

time to design and test. A solution comes in the form of the Java compiler. Since Java and C 

are similar, the Java compiler (which is available to Java programs) can be used to compile 

and  execute  a  user  program,  thus  gaining  native  Java  control  over  the  actions  of  the 

program. By “re-parsing” the Botball C code into Java code, a program is generated that 

can  be  run  by  the  simulator,  with  calls  to  Botball  library  functions  going  through  the 

simulator  itself.  This  method  works  well  enough  for  almost  all  Botball  programs;  the 

shortcomings section below goes into more detail on its failures.

The simulator accepts user C code when the “Load Code” button is clicked; pressing the 

green play button will start the code with the output from print statements shown in a text 

box on the bottom right. CBC buttons are simulated with either the keyboard or buttons on-

screen. The table graphics shown on the screen are read from a file which can be specified 

on simulator start up, allowing the simulator to be reused for future years. Both basic CBC 

and iRobot Create robot designs can be simulated, with functionality similar to that of the 

built-in KISS simulator. Create wheel encoders and touch sensors work as expected, but the 

battery, cliff, drop, infrared, and wall sensors all return default values. The CBC robot has 

no sensors by default, but sensors can be easily added later.

Motor   1                2                   3                  4                            Servo     1                2                   3                  4



Sensors are also simulated to a degree in the code. While KISS-C style button punching and 

slider dragging is allowed to manually simulate analog and digital inputs, additional methods 

have  been added  to  test  sensor-heavy  code.  For  fans  of  normally-closed  touch  sensor 

designs, right-clicking a digital port at the bottom of the screen will flip the behavior of the 

port  from  normally  open  to  normally  closed  and  back.  Ports  can  be  associated  with 

simulated sensors placed on the robot that can measure distance (ET), contact (touch), line 

color (top hat),  or the starting light.  Most Botball  sensors have at least partial  support, 

including the accelerometer, but the accuracy of the values is likely to vary from sensor to 

sensor and CBC to CBC. While support for sensors is still  basic and a work in progress, 

having some sensors working is an improvement over having none. No more excuses for 

not using any sensors in the program!

2.2 Realism

The physics in this simulator are also more realistic than the built-in KISS simulator. Instead 

of stopping on impact with a wall (or worse, driving through it), the new simulator uses the 

forces provided by each motor to generate a separate force and a torque around the robot’s 

center, causing the robot to exhibit more realistic behaviors such as sliding alongside a wall 

or rotating to line up with it. An example of such an improvement can be seen in Figure 2, 

where the left hand side shows how the KISS simulator might handle this scenario whereas 

the right side shows the correct behavior displayed by the new simulator. Such behaviors 

are  often  exploited  by  robots  seeking  to  establish  alignment  with  the  unmoving  field 

boundaries, as driving a robot with a flat back bumper straight backwards into a pipe will 

tend to align its bumper with the pipe, even if it starts slightly off angle. Fixing this behavior 

also accurately simulates other issues, such as the robot not instantly changing speeds or 

directions but instead having to change speeds continuously.

Figure 2: Sketchy physics versus realistic physics.

For the times when the robot does not succeed in its mission, the simulator provides tools 

to help find out what went wrong. Since this version of the simulator supports complete 

determinism, running the program again without clicking any of the randomize buttons will 

produce results identical to the failed run, allowing one to continually test the worst-case 

scenario while refining the program. A pause/play button allows the simulator to be paused 

or resumed at any time to examine precisely how much things need to be changed. For the 



times when one is willing to violate the unwritten code of robotics for the sake of testing, 

the “Hand of God” button will allow divine intervention in test runs to reposition the robot.

2.3 Shortcomings

The biggest shortcoming of this simulator is its limitation to two robot models – a generic 

iRobot  Create  chassis  and  a  generic  CBC  powered  chassis.  In  reality,  robots  could  be 

designed with other types of drive systems such as Ackerman drive1 or holonomic drive2, 

which the program is currently  not  designed to reproduce.  No grippers,  arms,  or  other 

objects can be added to or removed from the models as well; in particular, long arms add 

rotational inertia and move the center of gravity of the robot, aspects that cannot yet be 

simulated. As of the writing of this paper, only one robot can be run at a time, but this may 

be fixed by the time of the Global Conference.

Not all aspects of robot design are simulated at this point. Battery charge, one of the critical 

variables involved when performing repeated runs in the heat of competition, is not a factor 

in  the  code;  the  power_level()  function  or  gc_batt_voltage  variable  returns  a  constant 

value, and motors/servos are unaffected by any real or virtual battery discharge rate. Errors 

can be introduced into tests by initial position, board construction, or human judgment, but 

the simulator does not cover these errors, possibly luring an uneducated user into a false 

sense of consistency. Arc turns in particular tend to be dependent on a variety of factors not 

covered in the code, so avoid relying on the current simulator’s results to precisely calibrate 

high-speed arc turns.

The shortcut method of re-parsing C code to Java code also causes shortcomings over a real 

C parser.  Some valid  code, such as pointer and structure-heavy programs or extensive 

interchanging of boolean and integer variables, may fail to properly compile in the simulator 

even though it runs on a CBC or the KISS simulator. Botball programs tend to be sequential 

in nature, so this issue is somewhat acceptable; given more time, however, a real and 

standards- compliant C parser should be implemented instead. Programs that try to use 

files, Pthreads and mutexes [2], or OI scripting [3] tend to fail as well. While #define is fully 

supported, #include and #use are unreliable at best and #ifdef/#if does not work at all; a 

solution may be available by the time of this paper’s publication.

3   Future Work

The graphics of this simulator, while improved, could be made flashier by incorporating 3D 

views. 3D modeling could add features such as climbing over walls and multi-level tables, 

and would also allow sensors to be aimed more realistically. A future simulator might allow 

simple  modifications  to  be made to  the models;  this  would allow scoring objects  to be 

placed on the board and allow evaluation of test runs based on robot performance. While 

this  simulator  makes  errors  evident,  it  could  do  a  lot  more  to  ease  error  recovery.  A 

1 Ackerman drive: the drive system used by most automobiles where the front wheels are 
steered and the back wheels are powered.
2 Holonomic drive: a drive system where the wheels are not perpendicular to the ground, 
allowing for movement in any direction and rotation in place while driving.



measurement tool to find out how much the code needs to be changed would be useful, 

along with a replay button to explicitly review any section of the run at a modified time 

speed.

Support for a camera would be nice; blob tracking is not too difficult to code in Java, but 

accessing web cams is another story. Rendering the actual scene visible from the robot’s 

point of view is even more difficult, which would probably involve a 3-D representation of 

the entire world and an improved modeling scheme. Camera code is probably best left to an 

actual test, as issues with brightness/contrast,  color balance, frame rate, and sharpness 

contribute to the difficulties of good camera use. In addition, the sensor code needs tuning; 

a conditions button to test a variety of different settings for the game table would be great 

for reliability testing, and the sonar does not yet work. ET sensors need to be modified to 

change their results according to the type of object in view. Accelerometer support is also 

buggy, and every kind of touch sensor behaves identically.

4   Interested?

The  simulator’s  current  source  code is  available  at  http://code.google.com/p/botballsim. 

Follow the instructions if you want to look at the code; executable versions may be available 

by the time this paper is published. Keep in mind that this is development software which 

could be unstable or misleading; do not blame any failures at competition on this simulator 

or any other. The goal of Botball is still to have fun, and you can spend less time debugging 

and more time having real fun using this new simulator.

References

[1] National Institute of Standards and Technology, “USARSim: Unified System for 
Automation and Robot Simulation,” National Institutes of Standards and Technology, 
2007. [Online]. Available: http://usarsim.sourceforge.net/ [Accessed: September 16, 
2009]

[2] Myers, Ethan, “Multiprocessing using Pthreads and Mutexes,” presented at 2009 
Global Conference for Educational Robotics, Leesburg, Virginia.

[3] Rand, Jeremy, “Advanced Create OI Scripting: CBC Motors and Sensors, 
Subroutines, Longer Scripts, and More – No CBC Required,” presented at 2009 
Global Conference for Educational Robotics, Leesburg, Virginia.

http://code.google.com/p/botballsim
http://usarsim.sourceforge.net/

