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Achieving Consistency in Practical Robotics

1 The Necessity of Consistency

A robot is defined as “a machine that resembles a human and does mechanical, routine tasks on 
command.” [1]  Often, robots are designed to perform a complex or repetitive task with precision 
and  efficiency  outside  the  realm  of  human  capacity.   In  tasks  ranging  from  assembly-line 
production to brain surgery, a robot must be able to reliably complete a specified task regularly. 
Subsequently, robots must be designed with consistency in mind, such that a “routine task” can 
be completed in a habitually congruous manner, lest their very purpose be lost in the wake of 
disparity.

1.1 The Illusion of Consistency

In dealing with robots, especially those constructed of Lego™  parts, a motor cannot be expected 
to spin a precise distance on a regular basis.  For example, consider the following command, 
which will spin MOTOR_LEFT 1,000 ticks at a speed of 500:

mrp(MOTOR_LEFT,500,1000L);

Ideally, this motor would spin the same distance at the same speed each time this command was 
executed, as this simple line would seem to be an accurate way to drive a calculated distance. 
Yet, this is a practical impossibility.  This fundamental command does not take into account gear 
slipping or the battery strength of the robot, and will therefore not yield the same result each time 
it is executed.  For example, a gear slip on one run could cause the robot to actually move 1,100 
ticks, while a jam on the next run could cause the motor to tangibly spin 900 ticks.  As a result, a 
motor cannot reliably be spun a certain distance using merely one line of code.  The issue of 
precision,  particularly  in  dealing  with  motors  to  drive  the  robot  to  a  particular  location,  is 
therefore more intricate, and can only be achieved with the use of sensors to ensure a robot 
“knows” its position.

2 Mechanical Consistency

First and foremost, any robot must have the foundation of a solid mechanical design.  Motors and 
servos must be firmly mounted at all points throughout the robot so they maintain a constant 
position while the robot is in motion.  Trogdor, one of our robots, uses a lifting arm in order to 
stack  cups  on  top  of  one  another  (Figure  1).   The  success  of  our  cup-stacking  mechanism 
depends on the constant position of both the servos on which the arm rotates as well as the bed 
into which the cups are released.  If the cup bed were to shift to the left or the right, the arm 
would not properly store the cups, and they would easily fall out as the robot was driving.  Or, if 
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the mount for the arm were to shift backwards from the momentum of the swing, the cups would 
be released behind the robot, landing back on the board.  Therefore, the importance of a rugged 
motor or servo mount cannot be undermined, for a greater degree of consistency can be achieved 
using a motor with limited mobility inside its mount.

Figure 1: Trogdor's Cup Stacker

2.1 Geartrain Consistency

Direct-drive  robots,  in  which  wheels  are  connected  directly  to  motors,  are  frequently 
inconsistent.  This overly simplistic wheel mount often results in wheel slipping and increased 
tension on the motor itself, which could reduce its efficiency.  Instead, robots that drive on a 
geartrain, in which a series of gears connects the motor to the wheel axle, are more consistent.  A 
geartrain greatly reduces the potential for wheel misalignment; on a direct-drive wheel, the axle 
can easily slide, causing the robot to drive left or right even when programmed to drive straight. 
Furthermore,  a geartrain can be configured to maximize torque or speed,  depending on gear 
positions, in order to prevent the wheel from slipping on the board.  Even so, the possibility of 
gear slipping is inevitable on a geartrain, and gears must be carefully positioned so their teeth 
line up precisely.  

3 Programmatic Consistency

As  previously  stated,  even  the  ideally  constructed  mechanical  robot  cannot  be  expected  to 
perform  a  task  in  precisely  the  same  manner  using  simple  motor  commands.   Instead,  a 
combination of digital and analog sensors can be used to plan out a specific path for the robot, 
utilizing a task-oriented loop structure in which the robot  searches for predetermined values 
before proceeding to the next goal.



3.1 Landmark Positioning

Landmarks, or specific objects at a predetermined, fixed position, can be utilized in tracking the 
robot's position on a board.  In this year's game, landmarks include the plant and crew piles, the 
satellites, and the pipe edges of the game board.  Both digital and analog sensors can be used in 
landmark positioning, in which the robot moves until a specific sensor value is detected.  For 
example, a touch sensor can be used to determine the distance from a pipe; the robot can drive 
forward until  the touch sensor is tripped (and returns a value of 1),  then stop.   This can be 
accomplished using the following code:

while(digital(FRONT_TOUCH) != 1) {
mav(LEFT_WHEEL,300);
mav(RIGHT_WHEEL,300);

}
ao();

In  this  example,  both wheels  are  spun using  the  move_at_velocity  command instead  of  the 
previous  move_relative_position  function,  since  the  commands  are  inside  a  loop.   An 
instantaneous gear slip or jam will not severely affect this code sample, as the robot will continue 
driving until the touch sensor is tripped and therefore end up in the same position regardless of 
the means.  Furthermore, touch sensors are more consistent than analog sensors, as the potential 
for sensor malfunction is greatly reduced because digital sensors return only two values and 
trigger based on tangible, physical contact. 

Digital sensors, while useful in determining if a robot is touching a particular object, are limited 
in their utility.  Analog sensors, while somewhat less reliable than their digital counterparts, can 
be used to determine the exact distance from an object even when the robot is not touching it. 
For example, the following code excerpt utilizes an infrared sensor to spin clockwise until the 
robot is a set distance from a plant pile:

while(analog(FRONT_IR) < 200) {
     mav(LEFT_WHEEL,40);

}
ao();

Analog and digital sensors can be combined in order to plan out a specific path for the robot, in 
which reaching each landmark can be viewed as a separate task.  Using the above examples, the 
robot can drive forward until a touch sensor is tripped by an object such as a pipe, then turn right 
until a ball pile or cup is found.  In planning the path of the robot, the aforementioned sensor 
limitations must be considered; a touch sensor can reliably tell if a robot is touching a pipe, but 
the angle of the robot cannot be easily determined.  However, a digital sensor can be used to read 
the distance from another object and consequently calculate the angle of the robot in relation to 
the pipe.  A path that follows a pattern of digital and analog sensor readings is therefore most 
effective. Consistency can thereby be achieved by orienting the robot's mission around locating 
certain objects instead of driving fixed distances.



3.2 Proportional Speed

Stopping and starting motors abruptly hinders the consistency of a robot.  Attempting to bring a 
moving robot to a complete stop by immediately stopping both motors is largely ineffective, as 
the robot will most likely skid or twitch while stopping, thereby changing its traveled distance or 
angle.  While this change in position may appear minimal, the robot can greatly deviate from its 
intended path after several consecutive skids.  In order to limit “bang-bang” control, the speed of 
motors must be gradually reduced in a process similar to braking.  As the robot approaches a 
specific object, its speed must decrease proportionally to its position.  Therefore, analog sensors 
are most effective in achieving proportional speed.  In the following example, the robot will 
approach an object, decreasing its speed until it reaches the desired distance:

while(sonar(FRONT_SONAR) >= 136) {
int speed = (2 * sonar(FRONT_SONAR)) – 260;
// speed over 400 is too fast
if(speed > 400)

speed = 400;
// speed under 20 is too slow
if(speed < 20)

speed = 20;
mav(LEFT_MOTOR,speed);
mav(RIGHT_MOTOR,speed);

}
ao();

In  this  example,  the speed of  the robot  is  determined based on its  distance from an object, 
determined by sonar.  As the robot approaches the object, the value of the sonar will decrease, 
and  the  robot's  speed  will  reduce  proportionally,  using  the  equation  2x –  260.   Appropriate 
adjustments to the speed must also be made so the robot does not move too fast for the sonar to 
be  read  or  wastes  time  moving  slowly.   The  above  excerpt  is  more  consistent  than  simply 
stopping a motor, as the gradual reduction of speed reduces wheel slippage and allows the robot 
to stop in a constant position.

3.3 Failsafes

The failure of motors, sensors, and digital cameras is seemingly inevitable.   As a result,  the 
success  of  a  program must  not  depend on the  ideal  functioning of  all  aspects  of  the robot. 
Instead, failsafes must be inserted into the program so the robot can take appropriate action if 
something goes wrong to salvage as many points as necessary.  The severity of failsafes can 
range from a minor compensation due to a camera failure to a complete abort of the mission due 
to a sensor malfunction.  Minor failsafes should be placed throughout the program so that the 
robot does not become too reliant on the success of one motor or sensor.  For example, our 
robot's arm uses two infrared sensors on its arm to determine if a cup has entered the claw. 
Should one of these sensors fail, the other can still be used, and the mission will not have to be 
abandoned  completely.   However,  in  dealing  with  functions  that  are  integral  to  the  overall 



success of the program, a complete abort may be more beneficial.  For example, the following 
code is used to drive forward until a cup enters the robot's claw:

while(1) {
// cup found, so stop looking
if(analog(ARM_LEFT_IR) < 180 || 
  analog(ARM_RIGHT_IR) < 180) {

            ao();
            break;
        }
        // cup not found, so drive straight
        else {
          mav(LEFT_WHEEL,500);

mav(RIGHT_WHEEL,500);
        }

}

However, this segment is largely inefficient, as the robot will continue to drive forward if the cup 
is never found.  However, integrating a timer into the program so the robot only searches for the 
cup for a specific amount of time would allow for the implementation of an abort failsafe:

int timer;
for(timer = 0; timer < 200; timer++) {

if(timer > 198) {
// insert abort code
// stop robot
ao();
while(1) {}

}
// cup found, so stop looking
if(analog(ARM_LEFT_IR) < 180 || 
  analog(ARM_RIGHT_IR) < 180) {

            ao();
            break;
        }
        // cup not found, so drive straight
        else {
          mav(LEFT_WHEEL,500);

mav(RIGHT_WHEEL,500);
        }

}

Using this program, measures to be taken in the event the cup is not found can be inserted.  At 
this point, the mission can be completely aborted, since it would be impossible to complete, and 
the robot should try only to salvage as many points as necessary.

4 Integration of Mechanical and Programming Consistency



Ultimately, a robot must have sound mechanical and programming design if it is to be successful 
and consistent.  Neither aspect can take priority over the other, and cooperation between these 
two different fields must be fostered.  For example, it may be impossible to mount a sensor such 
that the distance from an object can be determined at  a perpendicular angle.   Therefore,  the 
programmer must be able to adjust values to reflect the discrepancies in readings.  Or, it may be 
impossible to read the value of a particular sensor; in this case, mechanical adjustments should 
be  made.   Only through  this  synthesis  of  software  and hardware  can  a  consistent  robot  be 
designed.
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