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Create Performance Tests - Beyond “Open Interface” 
 
Introduction 
During robot design and development, experienced team members could, until this year, start 
with an understanding of how the fast the robot would move using dead-reckoning with a certain 
accuracy.  For example if you commanded a black motor to "move relative position" at a speed 
of 400, using a certain size wheel would move the robot 50 cm +/- 1cm, but if you pushed it to 
the maximum speed, the position error would increase because of slippage; likewise, turns 
required slower motion to repeat a rotation with good accuracy.  However, now that we have the 
Create platform, the speed limits and accuracy conditions are unknown and some test 
experiments are needed in order to ease the development of robotics movement.  These 
constraints are partially due to the larger mass of the Create, new motors and rotation sensors, 
but are also due to the delays associated with sending commands and sensor quantization 
associated with the Create processor.  The delays are particularly large compared to XBC timing 
and are variable because the serial communications from the XBC-to-Create are asynchronous 
(each controller has an independent reference clock).  This report focuses on experiments and 
code to define constraints on commanding rotation and linear motion with the Create. 
 
Testing Motion Accuracy 
Several factors conspire to cause robot motion errors: (1) The robot usually doesn’t know exactly 
where it is on the playing field, so its position error after moving is the sum of the starting error 
and the error created while moving.  (2) For straight motion, given two motor steering as with 
the Create, the movement error is due to measurement error on the wheel rotation, wheel radius 
error, and differential rotation error; together they result in an ‘inline’ and ‘cross-track’ error in 
the final relative position.  (3) For turning motion all the errors in straight motion are multiplied 
by an additional error in the radius of the turn.  (4) For both straight and turning motion there are 
quantization or resolution errors in the commanded motion.  (5) Similarly, and especially for the 
Create controller, sample time resolution leads to errors (see below).  (6) Finally, for both 
straight and turning motion, there are slippage effects associated with Newton’s Laws and the 
friction between the wheels and the surface. 
In the general environment slippage on uneven surfaces can dominate a vehicle or robot’s 
position error, but on a Botball game board the surface is smooth flat and uniform, so we don’t 
have large uncertainties due to slippage except in cases of high acceleration.  One reason for 
testing the Create performance is to determine what speed is achievable without significant 
slippage or additional error in the resulting position. 
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The diagrams above illustrate the difference between the commanded move or rotate and the 
actual move in terms of a position error. 
 
Test Objectives, Plans and Procedures 
When we get down to testing the Create, as in most other development, it is best to start with a 
general test plan, then define a step-by-step procedure, and then write a little code to execute the 
procedure, or part of the procedure. At this point try it out, evaluate if the results are similar to 
those expected in the plan, and after some evaluation, revise the test and so on.  We usually make 
changes in the test parameters, the number of test runs, the code, and hopefully lead ourselves to 
a better understanding of what is possible, how the results relate. For the Create tests we hope to 
find out what the resultant error will be when moving the Create according to particular 
sequences of commands.  For each test development cycle we should ask why certain results 
occurred, and try to predict how they will change as a test parameter or sequence is changed.  In 
order to do this successfully, we must be careful to change only one thing at a time, otherwise we 
create multiple possibilities as causes for the new results.    
Test communication is important to assure all members of your team have a similar 
understanding of the test objective, the plan and the current procedure.  This must be written 
down if more than one person is involved.  Even if only one person is tasked with the test 
objective, having a written plan and procedure will be helpful to understanding new effects as 
they are uncovered. The test program code controls the test and therefore it must be changed and 
documented along with the results.  Here are four coding rules which will help to make the tests 
easier to understand and to communicate to others: 

1. Always add a comment line at the top describing the objective, and add comments at the 
top as code changes. 

2. Always put in a ‘printf’ statement to identify the code and then a ‘wait-for-button’ 
function following, so the code is self identifying on the display screen. 

3. As you change the code, do a ‘Save As’ to change the file name – usually just by adding 
a version #. 

4. Append the same version # to the title display, so you will be able to read the code 
version actually loaded into the controller. 

Here’s an early version of a test code that ran to measure the average time to send commands to 
the Create to measure distance. 
 
 
// Test to measure the time to sample a Create parameter 
/* Read a ‘gc_distance’ sample 10 times in a loop and measure the time to record the 
samples. Display samples and the time for the 10 samples 
after gathered ( so as to not slow-down the sampling with a ‘printf’) */ 
int sampl[11]; // an array to hold samples 
 
void main(){ 
    int i; 
    long st; 
    display_clear(); 
    printf("test sample period \n press Down to exc \n"); 
    create_connect(); 
    while(!down_button()){} //wait for ‘down’ button 
    create_distance();// set ref. distance 
    create_drive_straight(100); 
    st=mseconds(); //start time reference 



    
   for(i=0;i<10;i++){ 
        create_distance();//msleep(15L); 
        sampl[i]=gc_distance; 
    } 
    sampl[10]=(int)(mseconds()-st); 
    printf("\n i, dist\n"); 
    for(i=0;i<10;i++){ 
        printf(" %d  , %d  \n",i,sampl[i]); 
    } 
    printf("time = %d , ms" ,sampl[10]); 
    create_disconnect(); 
    printf("\n END"); 
} 
 
Data Evaluation 
When this test code is run the display shows ten distance samples and a time of ~150 
milliseconds (ms).  A total change of only 5 mm is indicated, which is less than expected.  At 
100 mm/sec, 0.150 sec should show a change of 15 mm, with at least an increment of 1 
mm/sample.  However, we know from basic physics that the robot must accelerate from stopped 
to the commanded speed, so perhaps it just takes more than 150 ms to get up to speed.  Thus the 
next test is to add 10 ms to the sample loop.   Multiple runs of this code raises new questions: (1) 
Why does adding 10 ms per sample loop, which had an average sample time of 15 ms, cause sets 
of 10 samples to range from 289 to 268 ms?  (2) Why does the distance read over the last 5 
samples create changes of 6, 7 or 8 mm, when samples spanning more than 0.1 sec should show 
at least 10 mm change?  
 
One could assume that the calibration is wrong, but other tests show that the XBC clock has a 
timing uncertainty of ~ 1 ms, and a sample loop of 10 analog values on the XBC takes about 15 
ms.   The answer to both observations involves understanding the quantization of the sample 
times, sync delays between the XBC and the Create controllers, and quantization of the 
measurement (distance).  The 10 ms delay usually causes the readings to skip a sample adding 15 
ms, but not always, so the average of the ten samples is more than 250 ms, but less than 300 ms. 
Furthermore, from the Create interface description, the individual readings measure the change 
in distance since the last data sample. Lets assume that the wheels are accurately commanded to 
move at 100 mm/s or 1.5 mm/0.015sec, the data sample period.  If the period between samples is 
small, such as the minimum data sample period of 15 ms, and on average only 1 or 2 mm 
increments occur between samples, the measurement will be quite erratic, and less than or equal 
to the maximum.  The value gc_distance recorded by the XBC is just the accumulation of these 
small, truncated distance measures (see the function description of ‘create_distance()’ in the 
library file “createlib.ic”.  For a fixed robot speed, adding more samples results in reading fewer 
increments of change for each sample, and can provide a more biased estimate on the low side of 
the actual distance moved. 
 
Extended Tests 
To better understand this effect an expanded version of the original test code was written to 
gather five sets of data, stopping after each set to display the last ten samples and the time lapse 
for gathering 20 samples.  Then a few different delays were added to the sample loop to see the 
effect of reading more distance increments between samples. 
 
//Test sample times and distance accuracy 
// -1 w. drive straight during velocity samples 



// -2 w. drive straight during distance samples 
// -2-d add 10 ms delay to loop, clear distance to start & add sim 
// -2-da-1 increase runs to 20 samples, display the last 10 per run 
// -2-da-2 increase loop delay to 25 ms 
// -2-da-3 increase loop delay to 28 ms 
 
int sampl[21][5];//2-da 2-dim. array for upload 
 
void main(){ 
    int i,j; 
    long st;// start time ref 
    //iROBOinit(BIGEMPTYWORLD); // initialize w/world - out for array  
    display_clear(); 
    printf("test sample period 2-da-3\n press Down to exc"); 
    create_connect(); 
    for(j=0;j<5;j++){ 
        while(down_button()){}// debounce 
        while(!down_button()){} 
        create_distance();msleep(28L); 
        gc_distance=0; 
        create_drive_straight(100); 
        st=mseconds(); 
        for(i=0;i<20;i++){ 
            create_distance();msleep(28L); 
            sampl[i][j]=gc_distance; 
        } 
        sampl[20][j]=(int)(mseconds()-st); 
        create_stop(); 
        // display recorded samples for each set here 
        display_clear(); 
        printf("i, dist\n"); 
        for(i=10;i<20;i++){ 
            printf(" %d  , %d  \n",i,sampl[i][j]); 
        } 
        printf("time = %d ms set # %d" ,sampl[20][j],j+1); 
    } 
    create_disconnect(); 
    printf("\n END"); 
} 
 
The data show about 400 ms is required to get up to the commanded speed, and that 28 ms gives 
the best control of the sample periods – at ~45 ms per sample. If one wants apply this 
understanding to move forward or backward a fixed distance, a while loop can be used similar to 
that shown in the Botball tutorial (slide115), and adjusting the loop delay for best accuracy.  For 
example at 100 mm/s with a delay of 28 ms, a distance can be commanded with an inline 
accuracy of ~ 10mm or better.  For moves at higher or lower speeds the delay should be tailored 
to provide about 4 mm or more increments per sample if possible.  In tests that the author 
performed, the cross track error seemed to be dominated by the angular orientation of the robot 
as it was positioned.  For rotation orientation, the round Create structure poses new challenges.  
Adding a long straight edge or two markings on the Create body are needed to align the robot to 
the edges or points on the field. 
 
Testing Distance and Angle Accuracy 
Similar issues apply to making accurate turns, and since the parameter measured is degrees of 



rotation, let us look at how many degrees are covered in a minimum sample period.  If the robot 
is spinning (turning about its center) we need to find the radius (r) which is half the distance 
between the wheels, or 129 mm.  From the geometry of a circle we know that circumferential 
distance around a half circle (180 degrees) is pi*r =3.14*129 
Thus 180 deg = 405 mm, and 1 deg = 2.25 mm 
If the speed is 100 mm/s, each 15 ms gives a change of only 1.5 mm so that a minimal sample 
period reads only 0.67 degrees change, and because the angle is quantized in degrees, we’ll need 
at least 4 periods, or 60 ms, to establish a good direct angular measurement and therefore the 
angular resolution by direct sensor reading is limited to ~ 3 deg.  Somewhat higher angular 
resolution can be achieved using the distance measure and converting.  The game objective in 
commanding accurate turns is usually to arrive at a target position with minimal error after 
following a path requiring both turns and straight distances.  Therefore a test has been devised 
which eases the measurement of the error for such a path with two two 180 deg turns and two 
straight segments to return to the starting position. 
 
 
 
 
Since the total angle change is 360 degrees the initial orientation of the robot doesn’t affect the 
error measured, and with a total distance of 1000 mm, the resulting cross-track error can be 
directly converted to angular error:  For small angles, A,  the sinA = A, in radians, therefore the 
cross-track error, XT, in mm, divided by 1000 and multiplied by 57.3 deg/rad is the angular 
error, in degrees.  A test code was written which makes the robot follow this path, and allows 
interactive adjustment of the turns to minimize XT.  Multiple runs (5 in the example code) with 
measurement of XT will provide data on the angular error while the inline error gives distance 
accuracy.  The measured angle and distance data, along with the battery voltage can then be 
uploaded to a spreadsheet for analysis with the physical measurements of the XT values. 
 
//Test two wheel turn and distance for accuracy & angle calibration 6/5/08 TLG 
// -2 use functions, setup initial angle via buttons 
// -3 left turn only 
// -4 use timed turns & 'create_full' & battery capacity output 
// -1L-2 use 'create_angle' and total angle instead of timed rotation 
// -1L-3-2 use XBC3 [w. USB} print set # (j+1) 
// -1L-4a use 2-dim array to record data 
int j, ar[6][5]; //array for recording data 
 
void main(){ 
    int ang=172, dist=500, sp=100; //nominal total_angle for 180 deg, distance, & speed  
    // iROBOinit(BIGEMPTYWORLD); // initialize w/world – take out for robot tests 
    display_clear(); 
    printf("Angle meas-2wheel\n -left turn CCW v1L-4a\n"); 
    // turn 180 deg = 12.9 cm radius * pi= 40.5 cm 
    create_connect(); 
    msleep(100L); 
    for(j=0;j<5;j++){ 
        while(!down_button()){ //wait for down button 
            display_set_xy(0,5); 
            if(left_button())ang-=1; 
            if(right_button())ang+=1; 
            printf("deg = %d vel = %d\n",ang,sp); 
            msleep(100L); 
        } 
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        create_full();//move outside test loop? 
        turn_left(ang,sp);ar[0][j]=gc_total_angle; 
        go_straight(dist,2*sp);ar[2][j]=gc_distance; // dist speed set to 200 mm/s 
        turn_left(ang,sp);ar[1][j]=gc_total_angle; 
        go_straight(dist,2*sp);ar[3][j]=gc_distance; 
        create_battery_charge();msleep(50L); 
        ar[5][j]=gc_batt_voltage; 
        printf("\nBattery voltage / set # =\n %d / %d ",ar[5][j],j+1); 
        printf("\n ang   - dist  - ang  - dist \n"); 
        printf(" %d   - %d   - %d   - %d", ar[0][j],ar[2][j],ar[1][j],ar[3][j]); 
        sleep(4.); 
    } 
    create_disconnect(); 
    printf("\n END"); 
} //A similar program can test and calibrate right-hand turns. 
 
void turn_left(int deg,int vel){ // ang ~ deg 
    create_angle();msleep(30L);//set ref angle 
    gc_total_angle =0; 
    create_spin_CCW(vel);//turn Counterclockwise, two wheels, 
    while(gc_total_angle<deg){create_angle();msleep(30L);} 
    create_stop();msleep(30L); 
    create_angle();msleep(30L); 
} 
 
void go_straight(int dist,int vel){// vel in mm/s 
    create_distance();msleep(30L);//set ref dist 
    gc_distance=0; 
    create_drive_straight(vel); 
    while(gc_distance<dist){create_distance();} 
    create_stop();msleep(30L); 
} 
 
Test data show that  ~40 mm of cross-track accuracy, or 2.3 deg, can be achieved, 
along with 10-20 mm of inline accuracy, and it is unaffected by battery voltage, if above 
13v.  Developers should be warned that other parallel processing in the XBC, such as 
the vision system will add a variable delay in sampling Create parameters, thus will add 
error (try adding it to the test code).  Also note that although test code can be tried on 
the simulator, it does not match the response of an actual Create very well, and thus 
can’t be used to calibrate angle or measure errors. 
 
Conclusions 
We have shown that the Create motion must be tested to understand how well it can be 
driven from straight or spin commands.  Because of slow data updates, measurement 
quantization, and sync delays between the XBC and the Create controllers, poor 
accuracy of motion can result.  Care must be taken to reset references for distance or 
angle by sending read commands, and to allow for truncated measures if the 
parameters are sampled before much change can occur in the sensor values.  The 
program code listed should help to record test data to assure that the accuracy is good 
enough for the robot move objectives. 


