

Create Open Interface Scripts:
Using the Create Without an XBC
Jeremy Rand
Norman High School
jeremy@asofok.org

Create Open Interface Scripts:
Using the Create Without an XBC

1 Introduction
When the iRobot Create [1] was introduced to Botball [2] in 2008, it added a new dimension to
the game. Suddenly, teams had access to a ready-made chassis, with bump, cliff, drop, and wall
sensors, powerful motors, and reasonably accurate encoders, all without needing to build
anything themselves. But few teams took advantage of one feature of the Create, Open Interface
Scripting, which allows a Create to work without any external hardware attached. This means
that teams will be able to use their Create as a third robot, while the two XBC’s [3] command the
other two robots. This paper will discuss Open Interface Scripting, its use in Botball, and the
limitations teams should be aware of when taking advantage of this very cool feature.

2 Prerequisites
Before proceeding with this paper, programmers should be familiar with the Interactive C (IC)
programming language [4] as well as the XBC-Create libraries for IC.

3 Entering Full Mode
One of the selling points of the Create is its numerous safety features. By default, the XBC
libraries put the Create in Safe Mode. This mean that whenever the cliff or drop sensors are
tripped, the Create will shut off its motors and ignore any actuator commands until the XBC
resends the create_safe() command. This is a nice feature if you have an XBC which can send
the create_safe() command. But when your Create doesn’t have an XBC attached, this can
cripple your bot, since if it passes too close to an edge, it will stop with no way to recover until
the round is over. If you are certain that your Create is not in any danger of dropping off the
table and smashing into pieces, you can disable this safety feature by using the create_full()
function. Note that if your Create gets damaged due to the safety being disabled, the damage is
not covered by the iRobot warranty.

4 The Script Commands
The main feature used to make the create work without an XBC is Open Interface Scripting.
Essentially, you can send up to 100 bytes of Open Interface commands (called a script) to the
Create, and it will store them. You can then instruct it to play the script, and once the script
starts, you won’t need to have an XBC attached.

To tell the Create that you would like to store a script, send the following bytes (all numbers are
in decimal): 152 length, where length is the total length in bytes of the commands you would like
to comprise the script. Note that the official iRobot documentation says that length is the

number of commands. This is incorrect! It is the number of bytes, not commands, so don’t let
that confuse you. To determine the number of bytes in each command, just look up the
command in createlib.ic in the IC library directory, and count the calls to serial_write_byte().
Once you have sent those two bytes, send the commands themselves, in the order in which you
would like them to execute. For example, if you wanted a script to move forward at 500mm/s,
and set the Power LED to red, you would use this:

serial_write_byte(152); // we want to store a script
serial_write_byte(9); // 9 total bytes
create_drive_straight(500); // 5 bytes
create_power_led(255, 255); // 4 bytes

Once you have stored the script, to play it, just send the byte 153. The script will remain in the
Create’s memory until the Create is power-cycled, during which time it can be played by sending
the byte 153. From this point on, the 152 length and 153 commands will be left out for clarity,
and I will just list the scripts themselves.

5 The Wait Commands
When programming the Create with an XBC, you might use sleep() or a while loop to wait for
something to happen. The Create has a set of equivalents, which, although less flexible, is
sufficient for many uses. These commands are the wait commands. To wait a specified time
before continuing the script, send the command 155 ds, where ds is the number of deciseconds
you wish to wait. To wait for a certain traveled distance (positive is forward), send 156
mm_high mm_low, where mm_high and mm_low are the high and low bytes of a 16-bit number
of millimeters. To wait for a certain angle turned (positive is counterclockwise), send 157
deg_high deg_low, where deg_high and deg_low are the high and low bytes of a 16-bit number
of degrees. Finally, to wait for a sensor reading, send 158 event, where event is one of the
following:

Byte Sensor Byte Sensor Byte Sensor
1 Wheel drop 8 Virtual wall 15 Home Base
2 Front wheel drop 9 Wall 16 Advance Button
3 Left wheel drop 10 Cliff 17 Play Button
4 Right wheel drop 11 Left Cliff 18-21 Digital Inputs 0-3
5 Bump 12 Front Left Cliff 22 OI Mode = Passive
6 Left bump 13 Front Right Cliff
7 Right Bump 14 Right Cliff

Table 1

To wait for the logical inverse of an event (e.g. waiting until the cliff sensors are reading false),
simply replace the event with 256-event (which is the same as multiplying the signed byte by -1).

Note that the Create will not respond to input until a wait command finishes. This also means
that if you accidentally have an incorrect sign while waiting for a distance or angle (e.g. telling it
to wait for a distance of 100mm while going backward), the create script will hang. If this
happens while the Create was driving forward, it will keep driving forward until someone hits

the Power switch. This can be dangerous if no one is present to stop it from driving headfirst
into a wall or off the table. Be careful!

As an example, the following script drives forward slowly until it bumps into something, and
then quickly backs up half a meter.

create_drive_straight(100); // Drive forward
serial_write_byte(158); serial_write_byte(5); // Wait for a bump
create_drive_straight(-500); // Drive backward
serial_write_byte(156); serial_write_byte(get_high_byte(-500));

serial_write_byte(get_low_byte(-500)); // Wait for -500mm
create_stop(); // Stop

6 XBC / Handy Board Motors
What good is a robot without
motors? Being restricted to just
the Create’s drive motors seems
limiting. Luckily, the Roomba
had brush and vacuum
motors, and since they are
no longer present on the
Create, those outputs are
now available to power up
to 3 motors with XBC /
Handy Board connectors.
The feature is called Low-
Side Drivers. Motors
connect to the DB25 Cargo
Bay Connector (See Figure 1 and
Table 2).

To turn the Low-Side Drivers on or off, simply use the create_low_side_drivers(int toggle2, int
toggle1, int toggle0) command. You can also use PWM [5] to control their power level using the
create_pwm_low_side_drivers(int pwm2, int pwm1, int pwm0) command (128 = full power).

7 Starting Lights and Time Limits
Readers who have tried out this feature will notice that the script starts running immediately after
the 153 byte is sent by the XBC. But in Botball, robots have to start and stop on their own. This
presents two problems which need a solution: starting and stopping at the correct time. The
solution for the first is quite simple: wait for a sensor reading. The Create doesn’t have a light
sensor, but it does have a bump sensor. Simply have an XBC robot hit the Create’s bump sensor
when the game starts.

Stopping at the correct time is trickier. Create scripts don’t support multitasking like IC does, so
a function like shut_down_in() is out of the question. The best result I can come up with is to
make certain that the script doesn’t contain any wait commands which could never terminate if
the bot makes an error. For example, you have a nice 45-second Create script. But you have it

Driver Number PWR Pin GND Pin Max Current Draw (mA)
0 8 22 100
1 9 23 500
2 10 24 1500

XBC (for reference) 1000

Table 1

Figure 1 (Source: iRobot)

wait until the left bump sensor hits a wall. What happens when the Create misses the wall by 2
inches and continues driving until it hits a wall on the right side, which won’t trigger the left
bump sensor? The Create will simply drive forever, not stopping when the time expires, and
disqualifying your team – not a good thing when you’re in Double Elimination and need to win a
match. Test your bots over and over, and think about what could cause an event wait command
to not terminate. Distance, angle, and time are safer than events for this reason; it’s hard for a
slight error to stop the wheels from spinning or cause time to stop! Therefore, events should be
used with care.

8 Restarting a Finished Script
Another issue that can be annoying is that the script has to be reloaded onto the Create with an
XBC prior to each time it is executed. This is quite easy to solve. You can trick a Create into
looping a script by making a 153 byte (the Play Script command) the last command in the script.
But you don’t want your bot to loop its program in a Botball round. The solution is to also wait
for the Advance button to be pressed at the beginning of the script. This way, once your script is
finished, you can press the Advance button on the Create to play it again. It also has the helpful
effect of not starting the script until you hit Advance, which can be useful in the event that
you’re setting up the bots and you don’t want your Create to run away when you accidentally hit
the bump sensor.

9 Limitations of Scripting
As cool as Create scripts are, they’re not going to replace XBC robots anytime soon. This is
because Create scripting is not a real programming language. Some of the many features
missing from Create scripts are variables, math of any kind, if statements, complex loops, and
multitasking. In addition, a maximum program size of 100 bytes isn’t sufficient for a complex
strategy. Its actuator support is shaky as well. XBC / Handy Board motors are unidirectional
when used with the Create, so if you need something to be able to move in two directions, you’ll
need two motors, which unnecessarily complicates the engineering as well as eating up your kit
pieces. RC Servos [6] are also not supported, and use of XBC-compatible sensors requires
modifying the sensors’ pinout (illegal in Botball).

10 Conclusion
Create scripts, despite their limitations, allow you to have a third robot on the table, which can
lead to new, possibly more effective strategies. For more information, the best reference on the
Create’s features is the Create Open Interface documentation [7]. If you’ve done something cool
with Create scripts that wasn’t covered here, I’d like to hear about it! E-mail me at the address
given at the top of this paper. Note that I can't provide full-fledged technical support for your
Create.

11 References
[1] iRobot. iRobot Create. http://www.irobot.com/sp.cfm?pageid=289, 2008.
[2] KIPR. Botball. http://www.botball.org, May 2008.
[3] R. LeGrand et al. The XBC: a Modern Low-Cost Mobile Robot Controller.

http://www.kipr.org/papers/xbc-iros05.pdf, July 2005.
[4] KIPR. Interactive C. http://www.botball.org/educational-resources/ic.php, March 2008.

[5] Wikipedia. Pulse Width Modulation: Power Delivery. http://en.wikipedia.org/wiki/Pulse-
width_modulation#Power_delivery, May 2008.

[6] Wikipedia. Servomechanism: RC Servos.
http://en.wikipedia.org/wiki/Servomechanism#RC_servos, May 2008.

[7] iRobot. iRobot Create Open Interface.
http://www.irobot.com/filelibrary/create/Create%20Open%20Interface_v2.pdf, January 2007.

